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Abstract
Advancements in robotics and autonomous systems are being deployed nowadays in many application domains such as
search and rescue, industrial automation, domestic services and healthcare. These systems are developed to tackle tasks
in some of the most challenging, labour intensive and dangerous environments. Inspecting structures (e.g. bridges,
buildings, ships, wind turbines and aircrafts) is considered a hard task for humans to perform and of critical importance
since missing any details could affect the structure’s performance and integrity. Additionally, structure inspection is time
and resource intensive and should be performed as efficiently and accurately as possible. Inspecting various structures has
been reported in the literature using different robotic platforms to: inspect difficult to reach areas and detect various types
of faults and anomalies. Typically, inspection missions involve performing three main tasks: coverage path planning, shape,
model or surface reconstruction and the actual inspection of the structure. Coverage path planning ensures the gener-
ation of an optimized path that guarantees the complete coverage of the structure of interest in order to gather highly
accurate information to be used for shape/model reconstruction. This article aims to provide an overview of the recent
work and breakthroughs in the field of coverage path planning and model reconstruction, with focus on 3D recon-
struction, for the purpose of robotic inspection.
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Introduction

The ongoing developments in the field of autonomous

robots have witnessed a growth in utilizing different

robotic platforms in real life applications. The interesting

application of robotic inspection involves many robotic

application domains employing different kinds of robotic

systems such as unmanned arial vehicles (UAVs),

unmanned ground vehicles (UGVs) and marine robots.

Inspecting large structures is particularly important in

applications that require maintenance, fault traceability,

anomaly and defects detection and model digitizing.

Technically, inspecting structures requires various

robotic capabilities such as localization in the environment

where the structure exists, path planning and navigation in

order to compute a set of achievable routes, sensing and

perception in order to gather information about the struc-

ture from different viewpoints along the route. As such, it is

important to equip the robot with intelligent sensing cap-

abilities that enhance the quality of the information gath-

ered in order to reconstruct and inspect the structure of
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interest accurately. While utilizing robotic systems in

inspection applications, majority of existing approaches

attempt to reduce the computational cost (time need to

compute and execute the inspection mission), avoid colli-

sion with the structure of interest and gather information

with sufficient resolution for anomaly detection.

Initial attempts that involve robots inspecting structures

in real-life scenarios were done in different environments

and for different applications. For instance, Nokia started

recently using SecuTronic INSPIRE drones for tower

inspection, line of sight testing and radio site planning in

order to optimize telecomm networks.1 San Diego Gas and

Electric Company is using drones for inspecting power lines,

pipelines and other remote infrastructures.2 Roads and Mar-

itime Services in Australia is using grit blasting robots for

cleaning bridges by scanning areas, creating 3D maps and

calculating the sand blasting force.3 Boeing, the largest aero-

space company in the world, started to use a UAV platform

for inspecting aircraft for lightning scratches and burns.4

Performing inspection missions with robotic platforms

reduces the cost and time and increases the accuracy in

comparison to conventional inspection processes.

The two main challenging research topics related to

inspection are coverage path planning (CPP) and work-

space 3D reconstruction. CPP is the process of computing

a feasible path encapsulating a set of viewpoints through

which the robot must pass in order to completely scan the

structure of interest. The set of generated viewpoints affects

CPP since it defines the positions and orientations of the

sensor from which the data will be perceived affecting the

overall coverage. The efficiency of the CPP algorithm is

measured by the planning completeness and convergence

speed. On the other hand, workspace 3D reconstruction is a

task during which the set of high-quality data, gathered

during the coverage path execution, is fused in a mapping

procedure to provide the complete and accurate model to

be used for inspection. The accuracy of the reconstructed

model is an important inspection performance metric,

which is evaluated by the resolution of the gathered infor-

mation and how close the reconstructed model is to real-

ity. The method of information gathering, whether it is

continuous or discrete, and the 3D mapping or reconstruc-

tion methods (online or offline) are all considered contri-

buting factors that will affect the model quality and the

inspection performance.

The inspection process usually starts by generating a set

of viewpoints, together with the optimized path to follow to

visit those view points, followed by a data gathering step,

during which the robot uses the onboard sensors to collect

data about the structure. Next, the data gathered will be used

to construct a 3D model of the structure that will be used for

inspection. This inspection sequence is depicted in Figure 1.

Coverage completeness is used to quantify and evaluate the

quality of the 3D reconstruction models and to determine

whether all the critical areas have been covered during the

inspection. The overall robotic inspection process could be

performed manually or autonomously, with or without a

reference model, online or offline (coverage path generation)

and continuous or discrete (viewpoints generation along the

path) based on the application scenario, the nature of the

structure of interest and the source of the defects.

In this survey article, the main components of the

robotic inspection process are defined and reviewed in sep-

arate sections. Section ‘CPP’ focuses on CPP and its com-

ponents. Coverage exploration and viewpoint generation

strategies will be reviewed in section ‘Coverage explora-

tion and viewpoint generation’ and coverage completeness

in section ‘Coverage completeness’. In section ‘Workspace

3D reconstruction’, different 3D reconstruction methods

are discussed including 3D environment mapping in sec-

tion ‘3D environment mapping’ and 3D structures recon-

struction in section ‘3D structures reconstruction’. An

overview discussion of the main aspects of robotic inspec-

tion is presented in section ‘Discussion’. Finally, conclu-

sions are drawn in section ‘Conclusion’.

CPP

CPP is a task during which a robot must explore in details a

workspace, whether it was an environment or a structure of

interest,5–7 and determine in the process the set of locations

to pass through avoiding all possible obstacles. CPP is

important in applications where the complete coverage of

an area has to be performed, similar to robots used for floor

cleaning, lawn mowing, agricultural surveying, surveil-

lance, structure painting, bridge grit blasting, geo-spatial

mapping and object reconstruction. Generally in CPP,

either a reference model of the structure or the environment

is provided in advance or the model is reconstructed using

the sensing capabilities of the robot in real time.5,7

Figure 1. The main components of the robotic inspection system.
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Galceran and Carreras5 provided an extensive review of

the most successful CPP methods discussing their function-

alities and the applications using these methods. CPP can

be performed either offline using a model encapsulating the

static information of a known environment or online where

real-time sensor measurements are used to cover the work-

space.5,6 The classical exact cellular decomposition cate-

gory in the study by Galceran and Carreras5 describes

mainly offline algorithms, while the online algorithms are

described under morse-based cellular decomposition,

landmark-based topological coverage, contact sensor-

based coverage of rectilinear environments and graph-

based coverage categories. In addition, grid-based coverage,

3D coverage, optimal coverage, coverage under uncertainty

and multi-robot coverage categories include both online and

offline algorithms.5

The main components of CPP include defining the

exploration method, generating viewpoints and planning

an optimized path, and quantifying the coverage comple-

teness. The viewpoints generation and path planning com-

ponents depend directly on the exploration method used to

cover the structure of interest. Viewpoint generation and

coverage exploration will be surveyed in detail in section

‘Coverage exploration and viewpoint generation’. CPP

can be divided into discrete path planning and continuous

path planning. Discrete CPP attempts to find a discrete set

of viewpoints covering the workspace or structure, fol-

lowed by finding an admissible route passing through the

viewpoint set in an optimal manner.8,9 Continuous CPP

includes performing continuous sensing along the trajec-

tory to be followed.9

Discrete coverage path planning

Discrete CPP algorithms divide the planning problem into

two steps: viewpoints generation to generate a discrete set of

viewpoints and optimal path generation using multi-goal

planning to connect the viewpoints. Discrete CPP algorithms

provide sequenced waypoints for the robot to follow. The

robot has to stabilize and perceive views at each waypoint in

order to avoid missing sensory observations.

The work presented in the study by Englot and Hover,7

Bircher et al.8 and Hover et al.10 uses an offline discrete

sampling-based CPP algorithm to provide full sensory cov-

erage of a 3D structure. Bircher et al.8 inspected different

3D structures like the Big Ben and other structures using a

UAV platform equipped with a visual-inertial (VI) camera

utilizing the previous mentioned two steps: solving an art

gallery problem (AGP) to find well configured viewpoints

in space and then computing the optimal path with the

lowest computational cost by solving a travelling salesman

problem (TSP). Lin-Kirighan heuristic (LKH) TSP solver

described in the study by Helsgaun11 produces high-quality

solutions in short time and it was used for solving the TSP

in the study by Bircher et al.8 This TSP solver includes a

modified LKH heuristic rules in order to direct and restrict

the search and achieve optimality effectively. The search

strategy is modified and restricted to select small but large

enough candidate sets based on a sensitive analysis of span-

ning trees. The research conducted in the study by Englot

and Hover7 and Hover et al.10 inspected a ship hull to detect

mines using an underwater robot by solving a coverage

sampling problem using watchman route and redundant

roadmap algorithms (first step) and then finding the cover-

age path shown in Figure 2 by solving a multi-goal plan-

ning problem using probabilistic road map (PRM)12 and

rapidly exploring random trees (RRT)13 algorithms (second

step). The approaches described in the study by Englot and

Hover,7 Bircher et al.8 and Hover et al.10 are iterative

approaches used to achieve optimal or asymptotically opti-

mal solutions.

Sampling-based path planning is often used in conjunc-

tion with discrete CPP to find a collision free path that

passes through the viewpoints optimally. The two main

properties that should be analysed for any sampling-based

path planning algorithm include the probabilistic comple-

teness and convergence. The most popular sampling-based

algorithms that guarantee probabilistic completeness are

Figure 2. Coverage path improvement: (a) initial generated coverage path and (b) the improved path. Source: Reused from the studies
by Englot and Hover7 and Hover et al.10
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PRM and RRT.14 Karaman and Frazzoli14 introduced the

optimal version of the previously mentioned popular algo-

rithms (PRM* and RRT*) by analysing their cost and

optimality. RRT* introduced in the study by Karaman and

Frazzoli14 was used in the work of Bircher et al.8 as a local

planner in the case of obstacle existence. Research pre-

sented in the study by Papadopoulos et al.15 proposed a

new sampling-based path planning algorithm called ran-

dom inspection tree algorithm (RITA), used particularly

for inspection, and it guarantees both probabilistic comple-

teness and optimal global path convergence. This algorithm

deals with the visibility and control problems simultane-

ously instead of dividing the planning problem into two

subproblems. Elizabeth et al.16 also proposed a new

sampling-based planning algorithm that is based on both

RRT* and rapidly exploring random graphs (RRG),17 and it

guarantees both optimality and probabilistic completeness.

It generates optimal trajectories based on large task speci-

fications represented as deterministic mu calculus.

Continuous CPP

Continuous CPP is mainly focused on following a tra-

jectory while perceiving sensed information continu-

ously. Classical path planning algorithms are the most

related algorithms to continuous CPP including cell

decomposition, generalized Voronoi diagram and grid-

based planning. These algorithms are adapted to satisfy

coverage constraints.5

A grid-based method was used in the study by Valente

et al.,6 where a prior known map was decomposed into cells

that should be covered by a UAV in an optimal path mini-

mizing: the number of turns, turning angle and coverage

completion time, in order to insure the continuity of the

path. The grid-based method is easily converted to a grid

graph consisting of nodes (representing the centre of the

cells) and edges. An optimal solution of this grid graph

represents a continuous smooth coverage trajectory that

facilitates the continuous sensing of the environment of

interest. This trajectory is found in the work of Valente

et al.6 using three solution options including tree-based

search, heuristic-based search using wavefront planner and

backtracking method and the pedestrian pocket algorithm

that divides the grid cells into smaller cells to improve the

computational cost. Another example of continuous cover-

age is illustrated in the studies of Atkar et al.,18,19 where an

auto body painting planning method was developed to seg-

ment complex 3D models like a car into simple topological

pieces (cells) and plan contiguous coverage paths over

these segments minimizing geodesic curvature and provid-

ing uniform painting. The segmentation part of the algo-

rithm is a cell decomposition performed using a slicing

function that depends on surface geometry and topology

to generate simple cells. In the study by Cheng et al.,20 a

UAV platform was used to cover different urban buildings

using planar looping trajectories that minimizes the

coverage time considering the dynamics of the UAV. These

trajectories are designed by developing simplified coverage

models converting the problem to coverage of non-planar

surfaces instead of complex 3D structures. Also, they are

designed such that the data captured by the sensors

mounted on the UAV platform will cover the urban build-

ings of interest continuously.

Coverage exploration and viewpoint
generation

In the majority of the surveyed literature, coverage explo-

ration algorithms are classified into model-based explora-

tion and non-model-based exploration. The model-based

exploration methods depend on the existence of a model

of the workspace or the structure, while the non-model-

based exploration is performed by exploring and planning

paths without a prior knowledge of the structure.21,22

Viewpoints generation and path planning are considered

critical in the robotic inspection process since it aims to

output an optimized path based on the generation of admis-

sible set of viewpoints that covers the structure or environ-

ment of interest. It is performed in the literature using

various techniques based on the inspection application and

the coverage exploration method used.

Model-based viewpoint generation

The main aim of model-based methods is to provide a set of

viewpoints that explores a structure or an environment in

such a way that every area of the structure is visible.21

Many of these approaches consider properties such as sen-

sor specifications that determine frustum field of view

(FOV) and shadow effects, object shapes and material

properties and image overlapping properties used during

image integration.21,22 Model-based view planning meth-

ods are further divided into three categories based on the

information embedded in the model of the structure includ-

ing set theory methods, graph theory methods and compu-

tational geometry methods.21,22

The set theory methods depend on two significant

matrices: visibility matrix and measurability matrix.21,22

The visibility matrix stores the visibility information of

each object surface point in the view point space, while the

measurability matrix stores measurement quality informa-

tion based on sensor frustum shape, sensor shadow effects

and measurement variations along the frustum.21,22

The graph theory methods depend on graph data struc-

tures that consist of nodes and arcs.21,22 The nodes repre-

sent object aspects that are the viewpoint space regions

with equivalent visibility, while the arcs represent the

aspects’ adjacency.21 These aspect graphs introduce com-

putational issues and difficulties, which make them not

suitable for representing a view planning problem.21

The computational geometry methods mainly deal with

solving an AGP to generate the set of viewpoints for
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structure coverage.22 AGP deals with polygonal areas in

order to determine the minimum number of viewpoints that

covers a structure or environment.22

Set theory and computational geometry methods are the

two most commonly used categories in the literature to

generate an admissible set of viewpoints for coverage plan-

ning. Scott21 presented a multi stage model-based view

planning approach using a set theory method and improved

the concept of the measurability matrix to reconstruct dif-

ferent object shapes using different laser scanning range

cameras with different capabilities. This approach starts

with an exploration phase during which a rough model of

an object is constructed. The model is then used to scan

precisely the object during a measurement phase resulting

in a high-quality reconstructed model. In the studies by

Englot and Hover,7,9 Hover et al.10 and Englot and Hover,23

a set of stationary views providing full coverage of a ship

hull was obtained using a polygonal mesh of the ship hull

and solving a set cover problem that generates a redundant

roadmap consisting of the viewpoints. In the study by

Dornhege et al.,24 different search-based algorithms were

used utilizing a known map in order to generate a set of

sequenced viewpoints that provide full coverage. It was

found that using set cover method with TSP provides the

best set of viewpoints in terms of computation time and

path cost.24 Another model-based view planning method

related to computational geometry methods was used in the

study by Bircher et al.8 This method uses a triangular mesh

of the desired structure to determine the set of viewpoints

with the best configurations by solving it as an AGP prob-

lem. Moreover, Janousek and Faigl25 presented another

model-based coverage method that uses triangular meshes

of the objects of interest, together with the free space tetra-

hedral divisions in order to generate the motion planning

roadmap and the coverage spaces, and finally find the

inspection path as shown in Figure 3.

Exploratory-based viewpoint generation

When a robotics system encounters an unknown environment

or object, it needs to perform exploratory view planning

concurrently with the reconstruction of the environment or

the object. The sequence of iterative steps involved in solving

this problem include robot localization, scanning, registration

and integration and planning the next viewpoint.26 Next best

view (NBV) strategies are popular iterative algorithms

used as exploratory-based view planning algorithms to

cover and model structures in indoor environments.

NBV strategy performs real-time exploratory sensing

and decision-making to acquire a suitable sensor view

that will be used with all the other previously obtained

views to decide on the best location of the next view.26–28

In general, exploratory view planning algorithms like NBV

are divided into three categories volumetric methods,

surface-based methods and global-based methods.

Volumetric methods model the workspace as a grid of

voxels and select the viewpoints based on the volume occu-

pied by the structure. Surface-based methods, on the other

hand, use the structure’s surface geometry to select the next

views. Surface-based methods include three techniques

based on the used surface geometry occluded edges, con-

tour following and parametric surfaces. The occluded

edges technique detects the geometric jump edges in the

range images, indicating surfaces that are not yet sampled

based on the premise that occluded edges infer not sampled

surfaces.21,22 The contour following technique involves

covering a portion of the object of interest by a sensor while

keeping it in close proximity to the surface. This technique

works well for simple shapes but struggles with geometri-

cally complex structures due to the complexity of collision

avoidance in these structures. The parametric surface repre-

sentations of super-quadric models are commonly used for

simple objects or segmented complex objects since they are

known to be flexible and compact in representation.

There has been many recent developments on NBV

algorithms to enhance view planning and to make it more

efficient. Vasquez-Gomez et al.26 presented a NBV algo-

rithm that enhances the scanning quality and reduces the

navigation distance by following a search-based paradigm

where the NBV is selected by evaluating a set of candidate

views using a utility function. The utility function evaluates

each view against different constraints such as information

Figure 3. Coverage path generation using self organizing maps: (a) coverage planned path across the objects of interest labeled with red
and (b) tetrahedral covering spaces. Source: Reused from the study by Janousek and Faigl.25
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gain, positioning constraints (view reachability), sensing

constraints (sensor FOV) and registration constraints (scans

overlapping area). Krainin et al.27 proposed a NBV method

that gathers views by grasping the object of interest and mov-

ing it in the camera FOV in order to collect higher quality

views, thus increases the dimensionality of the view planning

problem. The gathered views incorporate the manipulator

motion cost, which tends to increase based on the quality of

the views. High-quality poses are selected based on the trade-

off between the actuation cost and the view quality.

Another NBV method was proposed in the study by

Vásquez and Sucar28 which also follows the search-based

paradigm but plans for good views in the presence of posi-

tioning errors in two phases: the first phase evaluates the

candidate views, and the second phase preforms another

re-evaluation. These views are re-evaluated using the

convolution of two functions: the utility function and a

Gaussian function that accounts for the positioning errors.

A new exploration algorithm called nearest neighbour

NBV (NN-NBV) was presented in the study by Quin

et al.,29 which reduces the number of evaluated viewpoints

considering the closest viewpoints in the configuration space.

It also reduces the number of gain calculations, overall com-

putations and the time required to perform the exploration.

Coverage completeness

The completeness of CPP is assessed by quantifying the per-

centage of the covered part of the structure compared to the

original structure model. This component was presented in

the literature as a critical part of the planning algorithm itera-

tions and as a significant performance criteria.

The coverage completeness of model-based algorithms

can be computed directly based on the baseline used in the

planning procedure. Wallar30 proposed a model-based cov-

erage planner called planner for autonomous risk-sensitive

coverage, used by a team of quadcopters to maximize area

coverage in the xy plane of a previously known environ-

ment. The area coverage was quantified using a Monte-

Carlo process where a large number of randomly generated

points were sampled inside the xy bounding box of the

scene.30 The percentage of the total area covered was com-

puted using the ratio of the number of sampled points that

belongs to any of the sensed areas to the total number of

sampled points.30 In addition, the coverage planning algo-

rithm described previously in the study by Cheng et al.20

performed complete coverage for urban features by gener-

ating spiral trajectories based on the sensor position and

footprint area. The coverage completeness was guaranteed

by calculating the conical FOV sensor footprint surface

area and the number of generated footprints along the cov-

erage path followed around the simplified features (hemi-

spherical and cylindrical shapes).20

The non-model-based coverage planning completeness

is calculated by evaluating the NBV and computing the

termination condition. A coverage and exploration

algorithm is proposed in the study by Heng et al,31 a micro

ariel vehicle (MAV) platform equipped with a RGB-Depth

(RGBD) sensor to operate in an unknown environment.

The coverage is measured by the number of visible voxel

faces contained in the viewing frustum given a state posi-

tion and a discrete yaw angle. The visible faces are found

using a similar approach to z-buffering in which the pixels

stored in the buffer correspond to the closest voxels with

respect to the camera.31 The algorithm tends to maximize

the coverage by enforcing constant changes in the yaw

angle as the MAV is moving towards the goal position that

is chosen at each iteration according to its information gain

(number of unexplored voxels).31 The work presented in

the studies by Vasquez-Gomez et al.26 and Vásquez and

Sucar28 preformed complete model reconstruction under

positioning error by computing NBVs that provide new

information or scans, which could be registered and com-

bined with the previous scans using iterative closest point

(ICP). The views generated at each iteration are evaluated

using a utility function that assesses the view according to

the overlapping percentage, the scan quality and the dis-

tance travelled from the previous view. All of these com-

parisons are performed with respect to a voxel map that

represents the reconstructed model.26,28 In this work, the

coverage percentage was quantified indirectly utilizing the

overlapping percentage at each step. In addition to this, Lee

and Lee32 proposed a hyprid terrain coverage framework

(HTCF) that includes a hyprid decision module, which con-

siders the sloped surface conditions and differentiate

between gradual and steep terrain in order to apply one

of the following techniques: planar terrain coverage algo-

rithm and a spiral path terrain coverage algorithm. The

hybrid decision module checks the terrain coverage com-

pleteness at each step before deciding the suitable coverage

technique until the terrain is completely covered.

Workspace 3D reconstruction

Detailed 3D models are increasingly being required for dif-

ferent kinds of applications such as structure inspection,

urban planning, terrain surveillance, indoor mapping and

navigation. In general, a workspace 3D reconstruction pro-

cess involves four steps: viewpoint planning, scanning,

registering and integration.22 The 3D reconstruction depends

on localization that is done as part of simultaneous localiza-

tion and mapping (SLAM), an approach used in most recon-

struction and mapping applications. Workspace 3D

reconstruction is represented in the literature as a 3D map-

ping application of an environment or as a 3D reconstruction

for a structure or object of interest.10 We will survey each of

these fields separately in the following sections.

3D environment mapping

3D mapping techniques are used in different robotic appli-

cation scenarios such as search and rescue and surveillance
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scenarios. In some scenarios, fixed trajectories are followed

in order to map an environment, while in others, CPP meth-

ods are used to ensure coverage of certain areas. Faessler

et al.33 proposed a system that can perform two significant

operations autonomously, executing a given trajectory and

providing a live dense 3D map using a UAV platform

equipped with a camera. The main aspect of the system is

the semi-direct visual odometry (SVO) that consists of two

main threads: motion estimation thread that determines the

camera position with respect to the map and mapping

thread that extends the map while exploring the area. The

real-time dense 3D map reconstruction was performed

using an algorithm called regularized monocular depth

algorithm. This algorithm is used to build dense depth maps

in two steps: depth filter formulation and smoothness step

utilizing the images and the poses generated by SVO.33

Similarly, a real-time dense mapping was obtained in the

study by Weiss et al.34 using a single camera mounted on a

MAV employing a visual SLAM algorithm. The proposed

approach generates a 3D mesh from the extracted point

cloud, which is then textured and used during obstacle

avoidance and exploration.

Other 3D mapping frameworks are presented in the studies

by Hornung et al.35 (OctoMap) and Khan et al.36 (RMAP).

The OctoMap approach presented in the study by Hornung

et al.35 is based on octree data structure in which volumetric

3D environment models including free and unknown areas

are generated using probabilistic occupancy estimation. The

RMAP approach presented in the study by Khan et al.36 is

based on Rtrees data structure composed of rectangular

cuboids (RCs) hierarchy. In this approach, an occupancy grid

and axis aligned RC approximation are used to provide a 3D

probabilistic representation of the environment with multi

resolution capability. The approach in the study by Khan

et al.36 demonstrated better memory efficiency than35 due

to the fact that RMAP preforms implicit free space modelling.

Another more space efficient data structure is represented in

the study by Morris et al.37 based on a multi volume occu-

pancy grid (MVOG). MVOG groups the observations of a 2D

laser scanner as vertical volumes to represent free and occu-

pied spaces of 3D rectilinear indoor spaces.

Furthermore, octree-based maps were generated in the

studies by Omari et al.,38 Schadler et al.39 and Fossel

et al.40 using and extending the OctoMap 3D mapping

framework presented previously in the study by Hornung

et al.35 Omari et al.38 proposed a navigation system for a

UAV platform equipped with a VI sensor that estimates the

UAV pose and generates real-time environment 3D maps

for industrial inspection. The obtained depth images are

converted into a 3D point cloud stored in an octree-based

data structure that is updated whenever a new depth image

is obtained by raytracing the new point cloud in the octo-

map. Schadler et al.39 also proposed an octree-based 3D

mapping method in addition to a real time pose tracking

method utilizing two rotating laser scanners. The

octree-based map representing the environment is a

multi-resolution surfel (surface element) map in which the

surfels store both shape parameters and reflectance distri-

bution of the surface. The two main steps in registering the

local multi resolution surfel maps generated by the 3D laser

scans are surface association and pose estimation. An Octo-

SLAM algorithm was presented in the study by Fossel

et al.40 where an extended version of the octree represen-

tation was combined with an online occupancy grid map

learning algorithm (scan registration) called Hector SLAM.

Different data perceived by various sensors mounted on a

UAV platform were fused by the OctoSLAM algorithm to

generate the map including 2D laser range finder scans and

the altitude and attitude sensor data. In the study by Saar-

inen et al.,41 a novel 3D spatial online mapping approach

was proposed and it is represented as the normal distribu-

tions transforms occupancy grid map. It showed a high

performance in the number of updates and multi resolution

support in comparison to the Octomap approach. The pro-

posed approach provides exact recursive updates and sup-

ports multi resolution maps and mapping dynamic areas.

Moreover, a pipeline for 3D mapping using a laser range

finder mounted on a MAV was presented in the study by

Holz and Behnke,42 where the pipeline consists of two

algorithmic components: a pairwise registration algorithm

and a global alignment algorithm.

A different approach for 3D mapping was presented in

the study by Sehestedt et al.43 utilizing a depth sensor

mounted on a grit-blasting assistive device consisting of a

robotic manipulator and a Xion RGBD camera. The map-

ping was preformed by starting with a workspace funda-

mental element, such as a roof point cloud, to identify other

regions and narrowed down until the map matches a tem-

plate, thus enhancing the geometrical accuracy of the map.

The accuracy of 3D maps was the focus of,44 where a

fusion technique called invariant extended Kalman filter

(IEKF) was used to combine RGBD images with motion

sensor data to improve localization in order to provide

accurate 3D maps. ICP was used for analysing localization

error and performing localization using depth images.

3D structures reconstruction

In inspection applications, a 3D model of the structure is

usually required. The previously mentioned ship hull

inspection performed in the study by Hover et al.10 recon-

structed the vessels stern in order to detect mines. The

reconstruction was performed using the data frames com-

ing from a sonar range sensor, filtered and assembled into a

point cloud. The point cloud is then subsampled using

Poisson disk sampling and used to estimate the normals

and determine the orientation of the point cloud. Maurer

et al.45 proposed an image-based 3D reconstruction pipe-

line that fuses images captured by a MAV with geospatial

information in order to create georeferenced semi dense

3D models. The models created are considered an approx-

imation of a digital surface model (DSM). Haala and

Almadhoun et al. 7



Kada46 focused on describing the use of elevation data ori-

ginated from Light Detection and Ranging (LiDAR) or

image matching to preform building roof reconstruction,

assuming footprints were extracted before using the data.

The described approach in the study by Haala and Kada46

preformed reconstruction with parametric shapes, segmenta-

tion and DSM simplification.

A hybrid novel image-based modelling with a surface

parametrization system was described in the study by

Nguyen et al.47 This method generates 3D models using a

collection of unconstrained images employing two main

approaches: structure from motion (SfM) and bundle adjust-

ments. The stages of the reconstruction according to the

literature47 include camera parameter estimation using bun-

dle adjustments, scene geometry refinement, surface recon-

struction using Poisson surface reconstruction algorithm

and finally texture reconstruction using surface parametriza-

tion. Remondino et al.48 discussed 3D reconstruction using

camera-based images taken during a UAV flight path

planned for data acquisition. The camera calibration and

image triangulation were performed using bundle adjust-

ments and automatic arial triangulation techniques. The sur-

face reconstruction was performed using automated dense

image matching techniques or interactive methods. Different

reconstruction projects using Pix4D, a tool that utilizes bun-

dle adjustments approach, were able to reconstruct complex

structures using UAV platforms such as mapping Chillon

Castle and modelling Matterhorn Mountain in Switzer-

land.49–51 In addition to this, a live dense 3D reconstruction

was presented in the study by Wendel et al.,52 where a

proposed distributed reconstruction pipeline was used

exploiting visual SLAM and depth map fusion methods.

Additional examples of 3D structure reconstruction

using depth data perceived by RGBD sensors are pre-

sented in the studies by Sehestedt et al.,44, Silva et al.53

and Dong et al.54 Silva et al.53 proposed an improvement

to an existing reconstruction pipeline using noisy RGBD

images of an object to provide high-quality real-time

reconstructions. This pipeline includes an improvement

on the acquisition stage by creating a visual feedback

represented by real-time 3D model update using the

acquired images fused by KinectFusion implementation.

The other improvements include applying a noise reduc-

tion technique that uses an edge preserving filter to

improve the quality of images and performing offline

reconstruction using the resolved data textured using digi-

tal camera images. In the study by Dong et al.,54 a visual

odometry-based reconstruction method was proposed for

generating consistent indoor spaces reconstructions. The

proposed method combines the visual odometry data with

high-quality RGBD data using KinectFusion.

Discussion

Inspecting structures usually involves navigating through

an efficient route to explore the structure of interest,

mapping or 3D reconstructing the structure utilizing the

information gathered through the viewpoints encapsulated

in the route, and analysing the model for anomalies and

defects according to the application parameters. Two

approaches could be followed based on the analysed liter-

ature, and these are summarized in Figure 4.

The first approach involves using a priori model to gen-

erate a route offline and then execute the route for data

gathering to be used in model reconstruction. The second

approach involves performing an online route generation,

data gathering and model reconstruction all together. In

both approaches, a set of viewpoints will be generated

either based on a model or an initial model view. Full

model coverage and high resolution scans should be guar-

anteed in order to reconstruct an accurate model for inspec-

tion purposes. In both approaches, the reconstructed model

is assessed and the coverage percentage is quantified based

on the used coverage exploration method. The viewpoints

generation and path planning components are critical for

the inspection process, since different constraints could

affect the generation of viewpoints and coverage paths.

These constraints include sensor limitations, localization

errors, scan footprint and the standoff distance from the

model. Most of the work in the literature performed the

path generation by addressing some of these constraints,

which affected both the efficiency of the planning algo-

rithm and the resolution of the collected scans.

The quality of the scans should be high enough to facil-

itate the inspection in a particular application. In the studies

by Valente et al.,6 Englot and Hover7 and Bircher et al.,8 a

constant resolution was maintained by executing a route at

a fixed distance, without focusing on the quality of the

scans. In the study by Cheng et al.,20 a high resolution

reconstruction is maintained by simplifying the models of

the buildings and utilizing the sensor footprint area, sensor

uniform angular resolution and sensor orientation, in order

to reconstruct these buildings. The resolution in the study

by Cheng et al.20 is constrained also by the radius of the

circular trajectory that was bounded in the experiment by a

safety distance of 80 m and a sensor capture area less than

8777.14 pixels. This simplification is not useful while

inspecting complex structures, since it could remove criti-

cal features that are important for finding anomalies, unlike

urban features reconstruction.

Additionally, Galceran et al.55 performed redundant

fixed distance coverages of the same area in order to

maintain high resolution. The redundant coverages

increase the computational cost and affect the efficiency

of the process. Similarly, in the literature,21 a fine model-

ling method was proposed to enhance the deficiencies of a

model by improving the resolution of the computed view

plan. The fine modelling method starts with decimating or

segmenting a rough model of the structure, then generat-

ing the view points and the view plan and finally execut-

ing the plan. After executing the plan, the collected data is

evaluated according to the specific scanning objectives,
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then the low level scanning areas are identified and

upgraded with additional targeted scans. For object recon-

struction, this method was applied once but in inspection

tasks, it was repeated multiple times, thus affecting the

computational cost of the process.

CPP completeness is also considered a critical require-

ment, specially while inspecting complex structures. The

complexity of the structure will affect the complexity of the

planning procedure, the computational cost, the coverage

completeness and the coverage convergence speed. The

coverage path of such complex structures should be effi-

cient enough to cover all the generated viewpoints in a

short time consuming less resources. The average quadcop-

ter fly time is limited to around 20 min and this should be

taken into consideration when preforming real coverage

experimentations using UAVs.56 The method presented in

the study Scott21 took 1 h to reconstruct a complex structure

while it took from 3.6 min to 28.1 min to reconstruct dif-

ferent shapes in simulation. In the studies by Englot and

Hover7 and Hover et al.,10 the coverage path distance was

reduced using an improvement of RRT* method. Generat-

ing the initial path takes around 20 min, while the entire

procedure of generating the initial path and preforming the

improvements on the path takes around 2 h. The work

presented in the study by Papadopoulos et al.15 proved that

the RITA algorithm converges to the optimal path, with

completeness performance equivalent to that of RRG. In

this method, the convergence gets closer to the optimal path

Figure 4. Literature analysis diagram.
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when the algorithm is repeated for around 1 h. From these

references, it is noticeable that enhancing the path comes at

the expense of computational cost and experimental dura-

tion. This is particularly evident when online planning and

execution is performed, while performing offline planning

will not affect the experiment duration.

In addition to this, the work performed in the study by

Dornhege et al.24 detailed the duration of viewpoints gen-

eration and CPP for different location sizes such as a lab,

arena and campus. It presented the cost and the timing for

these locations using different coverage search algorithms

showing that NBV methods take much longer time than

using other model-based algorithms. The work presented

in the study by Janousek and Faigl25 showed that increasing

the number of epochs shortens the resulting inspection path

using self-organizing maps. Moreover, structure segmenta-

tion was performed in the studies by Atkar et al.,18 Cheng

et al.20 and Scott21 to generate coverage plans for each

segment, but this will take a long time for complex struc-

tures since they contain a lot of critical and small parts.

Another important aspect affecting the duration of

path execution is the sensing technique, whether it is

performed continuously along the path or discretely at

each viewpoint. Most of the analysed literature used

Table 2. Summary of non-model based coverage path planning approach references.

No reference model available

Reference
Viewpoints generation/
sampling method Coverage path generation

Evaluation (convergence,
completeness and resolution) Application

29 - Initial view based on
the sensor limitations

- The nearest poses to the
current pose are chosen using a
specific step size and checking
their validity

- The valid poses are selected
based on the information gain
and effort

- Evaluated viewpoints number,
information gain and
computational time reduction

- Another NBV (AXBAM NBV) is
used to check the area
exploration completeness

- Exploration of
complex 3D
environments

31 - 3D Workspace
discretization and yaw
non uniform
discretization

- A set of candidate goals
on the frontiers

- Pre-computations of the swath
and view frustum

Two planning problem:
- Choosing next best goal based

on maximizing utility function
(shortest path and information
gain)

- Path planning to the goal
maximizing coverage gain
(number of voxel faces)

- Maximize the size of the
reconstructed model

- Maximize the coverage
completeness

- Automated 3D
reconstruction of
an environment
(simulation)

28 - An initial position and
view is available

- NBV follows four
steps: positioning,
scanning, registering
and NBV planning

- Two evaluations for the
generated views based on a
utility function:

- Evaluating (information gain
(80%) and overlapping scans
(20%)

- Evaluating positioning error

- Reconstruction efficiency using
two evaluations

- Robustness against positioning
error

- The reduction of views

- Object 3D
reconstruction
(simulation)

26 - An initial position and
view is available

- The approximated
object dimensions are
known

- NBV follows four
steps: positioning,
scanning, registering
and NBV

Two evaluations for the generated
views based on both raytracing
resolution and a utility function:

- Evaluating Information gain,
overlapping scans, navigation
distance, and scans’ quality.

- Evaluating positioning error

- Scan’s quality enhancement
- Accelerated NBV and reduced

number of views to be evaluated
at each iteration (multi resolution
strategy)

- Object 3D
reconstruction
(simulation)

27 - Initial view based on
the depth sensor
limitations

- The object is grasped
and moved based on
NBV in front of the
camera

- Volumetric variant of NBV - Different grasps are generated
based on an information gain
threshold to provide complete
model

- 3D surface model
reconstruction

DSM: digital surface model; NBV: next best view; AXBAM: Autonomous exploration to Build a Map.
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Table 3. Summary of the 3D reconstruction approaches references.

Reference Sensors Algorithms Properties

45 - Panasonic Lumix LX3 digital camera
- GPS and IMU

- SfM to determine the camera
orientation

- Bundle adjustments (refine
reconstructed features points)

- Alignment of a semi dense
reconstruction with a DSM

- Patch-based semi-dense approach to
densify the sparse model

33 - Monocular camera – IMU - The depth at new 2D feature
positions is found using FAST corners
(depth filter)

- The depth filter is updated in a
recursive Bayesian fashion

- Depth filter is described by a
parametric model

- Depth map smoothing step using
Huber norm

34 - Monocular camera (uEye camera
with WVGA resolution and global
shutter)

- Camera position is determined
searching for corresponding features
(FAST corners)

- Adaptation of visual SLAM algorithm
of Klein and Murray (use a more
conservative key frame selecting
heuristic)

- Delaunay triangulation is used to
reveal the real topology of the scene
to build 3D-textured mesh map

- SLAM algorithm is robust against
partial camera occlusions

- 3D point features are projected to 2D
image plane to extract the desired
texture for the map

- Using bundle adjustments to minimize
the error between the projected map
points and the corresponding
observations

35 - Stereo camera
- Laser (deals with point cloud)

- Volumetric 3D environment models
including free and unknown areas are
generated by using probabilistic
occupancy estimation

- Octrees data structure is used
- Bounded per-volume confidence is

used to substantially reduce memory
usage

36 - Laser (deals with point cloud) - An occupancy grid and axis-aligned
RC approximation were used to
provide a 3D probabilistic
representation of the environment
with multi-resolution capability

- SLAM algorithm is robust against
partial camera occlusions

- 3D point features are projected to 2D
image plane to extract the desired
texture for the map

- Using bundle adjustments to minimize
the error between the projected map
points and the corresponding
observations

37 - Altimet–r -IMU
- Hokuyo laser range finder
- Swiss Ranger 4000 depth camera

- 3D MVOG mapping similar to 2D
occupancy grid approach

- The steps of updating the MVOG:
rasterization, insert and creating
volumes and apply constraints

- Scan matching approach with depth
images

- MVOG data structure groups the
observations of a 2D laser scanner as
vertical volumes to represent free and
occupied spaces of 3D rectilinear
indoor spaces

46 - Airborne images
- Laser scans

- Reconstruction based on
segmentation

- Footprint decomposition and
parametric shapes

- Reconstruction by DSM simplification
- Building facades

- Terrestrial data collection for
providing detailed information on
building facades while modeling cities

47 - Digital camera - SfM and bundle adjustment for
defining camera parameters and a 3D
scene geometry

- Hybrid multi-view image-based
modeling approach coupled with a
surface parameterization technique
for 3D-textured mapping

- Point cloud density is enhanced
exploiting silhouette information of
the scene

- Segmentation and charting approach
are used to create high quality texture

- Using graph cut technique to fuse the
projected best fitted images on each
surface segment over each chart to
create textured map

(continued)
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Table 3. (continued)

Reference Sensors Algorithms Properties

48 - Digital camera - Automated dense image matching
techniques or interactive methods for
features and vector information
extraction

- Automated methods generate DSM
- Interactive approaches deliver sparse

point clouds that need structuring

52 - Single industrial camera (IDS UI-
1240SE; a maximum resolution of
1280 � 1024 pixels, global shutter
and an 8 mm lens)

- Visual SLAM of Klein and Murray with
variations on the distributed
operation is used

- New points are add by triangulation
with neighboring views

- Quasi-dense depth maps are
computed based on the collected key
frames using multi-view version of the
plane sweep algorithm

- Live dense volumetric
reconstructions

- Bundle adjustment is used for
refinement

- Depth map fusion is based on
truncated signed distance function

38 - VI sensor (The sensor dimensions
are 144� 40� 57 mm3 with a weight
of 130 g and a power consumption of
less than 7 W.)

- OctoMap mapping framework is used
- The depth images are estimated using

the area correlation-based block-
matching algorithm

- Integrating GPS measurements makes
the point cloud geo-referenced

39 - 2D laser scanner - Surfels are associated between maps
from the finest resolution to coarser
resolutions until associations have
been determined for the entire map

- 3D scans are represented by local
multi-resolution surfel maps

- 3D scans are efficiently registered
and aligned in a global map using graph
optimization

- Multi-resolution surfel
representations allow for compact
maps and efficient registration of local
maps

40 - 2D laser range finder
- Altitude sensor – IMU

- A planar based SLAM algorithm that
operates on a 3D representation of
environments

- Scan registration algorithm is derived
from Hector SLAM

- 3D environment are represented by
an octree based map

42 - A developed lightweight 3D laser
scanner (rotating 2D laser range
finder)

3D mapping pipeline:
- Scans pairwise registration that

include topological information from
approximate surface reconstructions

- Global alignment of scans using graph-
based approach

- 3D laser sensor provides
omnidirectional sensing at high frame
rates (2 Hz)

43 - Depth camera (Xtion camera) - Mapping procedure is done by
segmenting available digital models to
regions and applying template
matching using ICP

- Digital models of particular structural
elements are used

- RANSAC is used to remove
remaining outliers

53 - Depth sensor (Kinect)
- Digital camera

3D reconstruction pipeline:
- An implementation of KinectFusion

used to create a real-time updating 3D
model used only for visual feedback

- A spatio-temporal resolution method
to improve the depth images

- Mesh integration using VRIP and
Consensus Surfaces and the IVIA

- Texture is applied using digital camera
images

- Pre-aligning the resolved data using
SURF followed by two phase of ICP
offers maximum precession

44 - Kinect sensor
- Three-axis gyroscope (IMU

Crossbow VG600)

- Fusion of depth images with motion
data is done using of invariant EKF and
is directly based on the estimated
covariance of the ICP

- The accuracy of the localization is
improved

(continued)
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discrete sensing, since it allows the robot to stabilize

before scanning and avoid missing observations, but fol-

lowing this approach increases the inspection duration as

described earlier.

The second important aspect in robotic inspection appli-

cations is the 3D reconstruction process, during which the

data gathered are combined to create an accurate 3D model

of the object or structure of interest. 3D reconstruction

could be handled offline, after the coverage path execution

and data gathering processes, or online where CPP and data

gathering are being performed consequently as described in

the diagram shown in Figure 4.

3D reconstruction and mapping algorithms deal with

point clouds, 2D images data and other forms of data

that are considered complex data, which requires an

efficient memory representation to encapsulate the gen-

erated model. The literature presented in the studies by

Hornung et al.,35 Omari et al.38 and Fossel et al.40 used

an octree data structure for representing the 3D environ-

ment maps. One of the advantages of octree is that the

initialization of the map volumes is delayed until the

map integration process, unlike fixed grid structures.

Another data structure representation illustrated in the

work of Khan et al.36 is the Rtree that consists of RCs

instead of voxels. The approach described in the work of

Khan et al.36 generates variable-sized cuboids that

reduce the memory complexity and make the memory

efficient for axis aligned surfaces. Another efficient data

structure discussed earlier is the MVOG presented in the

study by Morris et al.37 for representing rectilinear

indoor environments.

Another important part of the 3D reconstruction and

mapping procedure is the camera localization, usually pre-

formed by different methods in the surveyed literature. In

some of the literature,34,52 the localization is preformed as

part of a visual SLAM algorithm, while searching for

corresponding features in the collected scenes. In the lit-

erarure,45,47 SfM was used to determine the camera posi-

tion and orientation. Another method for localization and

motion estimation is the SVO proposed in the study by

Faessler et al.33 for MAV localization in environments con-

taining highly repetitive texture.

The components of the CPP process used in the sur-

veyed work in this article are summarized in Tables 1 and

2. Table 1 summarizes the surveyed research on the model-

based approaches, while Table 2 summarizes the surveyed

research on the non-model-based approaches. In these

tables, each article is summarized in a row, where the col-

umns list the viewpoints generation method, the coverage

path generation method, the evaluations of the coverage

method and the application performed. Different evalua-

tions are performed in terms of path planning complete-

ness, coverage completeness and convergence and the

quality of the scans. The 3D reconstruction work surveyed

is summarized in Table 3. In this tables, each article is

presented in a row, where the columns list the sensors used,

the algorithms developed and additional properties

described in that article.

Conclusion

In this article, we have surveyed the literature related to the

inspection of structures using robotic systems. The major

components of inspection are identified and discussed.

The CPP problem has been addressed using different

approaches in the literature based on a reference model

of the object. The model-based CPP research work

reviewed in this article dominates the non model-based

research work performed in the application of inspection.

The model-based approach utilizes the existence of the

priori static knowledge of the structure of interest in order

to generate a coverage path that passes through an

Table 3. (continued)

Reference Sensors Algorithms Properties

54 - RGBD sensor - A 6D RGBD odometry approach is
followed to find the relative camera
pose between consecutive RGBD
frames

- KinectFusion algorithm fine tunes
frame to frame relative poses and
fuses depth data to global implicit
surface using ICP

- Camera relative pose is found be key
points extraction and feature
matching on the RGB and depth image
planes

49,50 - Canon 6D with Sigma fisheye 8 mm
- Sony alpha7r with fisheye
- DJI Phantom 2 Vision
- Tachymeter
- GoPro Hero3

- Pix4DMapper (based on bundle
adjustments)

- Individual reconstructions were done
for each sensor then a global
reconstruction was obtained
combining the individual ones

- Geo-referenced and very accurate
model of complex architecture are
obtained using consumer grade
cameras

DSM: digital surface model; RC: rectangular cuboid; MVOG: multi volume occupancy grid; ICP: iterative closest point; VRIP: volumetric range image
processing; IVIA: IMAGO volumetric integration algorithm; SLAM: simultaneous localization and mapping; SfM: structure from motion; EKF: extended
Kalman filter; RANSAC: Radom Sample Consensus.
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admissible set of viewpoints and provide maximum cover-

age for reconstruction and inspection. The non-model

based approach evaluates next best candidate views to pro-

vide the maximum coverage based on the coverage and

information gain using different utility functions. The

model-based approach performs the CPP offline, while the

non-model based approach performs a cycle of online itera-

tive steps including candidate views generation, evaluation

and path planning, scanning and reconstruction. The recon-

struction process is performed using different approaches

that range from simple structure reconstruction to complex

environments mapping and reconstruction. In general, the

two main methods for performing inspection using robotics

involve finding an optimized short path passing through a

set of viewpoints that provide full coverage and high qual-

ity scans, and reconstructing an accurate model utilizing

the collected scans in order to detect or trace anomalies

and faults in the constructed model.

In real-life inspection applications, accuracy and cover-

age completeness are considered two major concerns.

Although several research work preformed CPP and 3D

reconstruction in different inspection applications, little

attention has been given to incorporating sensor accuracy

and coverage completion in CPP methods. In addition to

this, most of the reviewed literature either preformed cov-

erage on simple geometrical structures or performed model

simplification before applying CPP using the structure

model, which in both cases affect the reconstructed model

accuracy and coverage completeness. Therefore, incorpor-

ating sensors accuracy during coverage planning, and

extensively evaluating coverage completeness are still con-

sidered open research areas in this field that require further

investigation.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

References

1. Nokia puts ‘‘telco drones’’ to work inspecting cell towers.

http://www.zdnet.com/article/nokia-puts-telco-drones-to-

work-inspecting-cell-towers/ (accessed 13 Sepember 2015).

2. Smith R. Utilities turn to drones to inspect power lines and

pipelines. http://www.wsj.com/articles/utilities-turn-to-

drones-to-inspect-power-lines-and-pipelines-1430881491

(accessed 5 September 2015).

3. Phil Mercer. Grit-blasting robots clean Sydney Harbour

Bridge. BBC News, http://www.bbc.com/news/world-asia-

23352958 (accessed 13 september 2015).

4. Boeing uses drones for inspection. http://www.rocketmine.

com/boeing-uses-drones-for-inspection/ (accessed 23 August

2015).

5. Galceran E and Carreras M. A survey on coverage path

planning for robotics. Robot Autom Syst 2013; 61(12):

1258–1276.

6. Valente J, Barrientos A and Cerro JD. Coverage path plan-

ning to survey large outdoor areas with aerial robots: a com-

prehensive analysis. Introduction to Modern Robotics 2011,

http://iconceptpress.com/download/paper/101108074033

pdf (accessed 20 July 2015).

7. Englot B and Hover F. Sampling-based coverage path

planning for inspection of complex structures. In: Icaps

2012, pp. 29–37. Available from: http://www.aaai.org/ocs/

index.php/icaps/icaps12/paper/download/4728/4711

(accessed 1 August 2015).

8. Bircher A, Alexis K, Burri M, et al. Structural inspection path

planning via iterative viewpoint resampling with application

to aerial robotics. In: IEEE international conference on

robotics and automation (ICRA), Seattle, WA, 2015, pp.

6423–6430. DOI: 10.1109/ICRA.2015.7140101.

9. Englot B and Hover FS. Sampling-based sweep planning to

exploit local planarity in the inspection of complex 3D struc-

tures. In: IEEE/RSJ international conference on intelligent

robots and systems, Vilamoura, 2012, pp. 4456–4463. DOI:

10.1109/IROS.2012.6386126.

10. Hover FS, Eustice RM, Kim A, et al. Advanced perception,

navigation and planning for autonomous in-water ship hull

inspection. Int J Robot Res 2012; 31(12): 1445–1464.

11. Helsgaun K. Effective implementation of the Lin-Kernighan

traveling salesman heuristic. Eur J Oper Res 2000; 126(1):

106–130.

12. Kavraki LE, Kavraki LE, Svestka P, et al. Probabilistic

roadmaps for path planning in high-dimensional configura-

tion spaces. IEEE Trans Robot Autom 1996; 12(4):

566–580.

13. LaValle SM and Kuffner JJ. Randomized kinodynamic plan-

ning. In: Proceedings 1999 IEEE international conference

on, Detroit, MI, 1999, vol. 1, pp. 473–479. Doi: 10.1109/

ROBOT.1999.770022.

14. Karaman S and Frazzoli E. Sampling-based algorithms for

optimal motion planning. Int J Robot Res 2011; 30(7):

846–894.

15. Papadopoulos G, Kurniawati H and Patrikalakis NM. Asymp-

totically optimal inspection planning using systems with dif-

ferential constraints. In: IEEE international conference on

robotics and automation (ICRA), Karlsruhe, 2013, pp.

4126–4133. Doi: 10.1109/ICRA.2013.6631159.

16. Karaman S and Frazzoli E. Sampling-based algorithms for

optimal motion planning with deterministic �-calculus spec-

ifications. In: 2012 american control conference (ACC),

Montreal, QC, 2012, pp. 735–742. DOI: 10.1109/ACC.

2012.6315419.

17. Karaman S and Frazzoli E. Incremental sampling-based

algorithms for optimal motion planning. Proc. Robotics:

Science and Systems (RSS), 2010.

16 International Journal of Advanced Robotic Systems

http://www.zdnet.com/article/nokia-puts-telco-drones-to-work-inspecting-cell-towers/
http://www.zdnet.com/article/nokia-puts-telco-drones-to-work-inspecting-cell-towers/
http://www.wsj.com/articles/utilities-turn-to-drones-to-inspect-power-lines-and-pipelines-1430881491
http://www.wsj.com/articles/utilities-turn-to-drones-to-inspect-power-lines-and-pipelines-1430881491
http://www.bbc.com/news/world-asia-23352958
http://www.bbc.com/news/world-asia-23352958
http://www.rocketmine.com/boeing-uses-drones-for-inspection/
http://www.rocketmine.com/boeing-uses-drones-for-inspection/
http://iconceptpress.com/download/paper/101108074033.pdf
http://iconceptpress.com/download/paper/101108074033.pdf
http://www.aaai.org/ocs/index.php/icaps/icaps12/paper/download/4728/4711
http://www.aaai.org/ocs/index.php/icaps/icaps12/paper/download/4728/4711


18. Atkar PN, Conner DC, Greenfield A, et al. Hierarchical seg-

mentation of surfaces embedded in R3 for auto-body paint-

ing. In: Proceedings of the 2005 IEEE international

conference on robotics and automation, 2005, pp. 572–577.

DOI: 10.1109/ROBOT.2005.1570179.

19. Atkar PN, Conner DC, Greenfield A, et al. Uniform cov-

erage of simple surfaces embedded in R 3 for auto-body

painting. Workshop on algorithmic foundations of

robotics, 2004, pp. 383–398.

20. Cheng P, Keller J and Kumar V. Time-optimal UAV trajec-

tory planning for 3D urban structure coverage. In: 2008

IEEE/RSJ international conference on intelligent robots and

systems, Nice, 2008, pp. 2750–2757. DOI: 10.1109/IROS.

2008.4650988.

21. Scott WR. Model-based view planning. Mach Vis Appl 2009;

20(1): 47–69.

22. Scott WR, Roth G and Rivest JF. View planning for auto-

mated three-dimensional object reconstruction and inspec-

tion. ACM Comput Survey 2003; 35(1): 64–96.

23. Englot B and Hover F. Inspection planning for sensor cover-

age of 3D marine structures. In: Intelligent robots and sys-

tems (IROS), 2010 IEEE/RSJ international conference on,

Taipei, 2010, pp. 4412–4417. DOI: 10.1109/IROS.2010.

5648908.

24. Dornhege C, Kleiner A and Kolling A. Coverage search in

3D. In: 2013 IEEE international symposium on safety, secu-

rity, and rescue robotics (SSRR), Linkoping, 2013, pp. 1–8.

DOI: 10.1109/SSRR.2013.6719340.
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53. Silva JW, Gomes L, Agüero KA, et al. Real-time acquisition

and super-resolution techniques on 3D reconstruction. In:

2013 IEEE international conference on image processing,

Melbourne, VIC, 2013, pp. 2135–2139. DOI: 10.1109/ICIP.

2013.6738440.

54. Dong H, Figueroa N and Saddik AE. Towards consistent

reconstructions of indoor spaces based on 6D RGB-D

odometry and kinectfusion. In: 2014 IEEE/RSJ interna-

tional conference on intelligent robots and systems, Chi-

cago, IL, 2014, pp. 1796–1803. DOI: 10.1109/IROS.

2014.6942798.

55. Galceran E, Campos R, Palomeras N, et al. Coverage path

planning with realtime replanning for inspection of 3D under-

water structures. In: 2014 IEEE international conference on

robotics and automation (ICRA), Hong Kong, 2014, pp.

6586–6591. DOI: 10.1109/ICRA.2014.6907831.

56. How to choose battery for Quadcopter, Tricopter and Hexa-

copter. http://blog.oscarliang.net/how-to-choose-battery-for-

quadcopter-multicopter/ (accessed 23 July 2015).

18 International Journal of Advanced Robotic Systems

https://support.pix4d.com/hc/en-us articles/202557199-Scientific-White Paper-The-Chillon-Project-AerialTerrestrialand-Indoor-Integration
https://support.pix4d.com/hc/en-us articles/202557199-Scientific-White Paper-The-Chillon-Project-AerialTerrestrialand-Indoor-Integration
https://support.pix4d.com/hc/en-us articles/202557199-Scientific-White Paper-The-Chillon-Project-AerialTerrestrialand-Indoor-Integration
http://www.pix4d.com
http://www.pix4d.com
https://pix4d.com/modelling-matterhorn/
https://pix4d.com/modelling-matterhorn/
http://blog.oscarliang.net/how-to-choose-battery-for-quadcopter-multicopter/
http://blog.oscarliang.net/how-to-choose-battery-for-quadcopter-multicopter/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


